COLORECTAL CANCER IN-BETWEEN CLINICAL APPLICATION AND TRANSLATIONAL RESEARCH: WHERE DO WE STAND AND WHAT CAN BE IMPROVED?

Authors

DOI:

https://doi.org/10.34635/rpc.816

Keywords:

Colorectal cancer, diagnosis, heterogeneity, biomarkers, glycosylation

Abstract

Colorectal cancer remains the second deadliest type of cancer with many causes resulting in a severe outcome. It is well recognized the higher level of cellular heterogeneity of colorectal cancer respect to any other type of cancer, which plays a significant role in its diagnosis, prognosis and treatment. Colorectal cancer is a curable disease when detected in early phases, up to 90% when detected in stage I, but the absence of symptoms makes the diagnosis a problematic process. Thus, the understanding of the tumour dynamics, cancer genetics and the expression of specific tumour biomarkers is crucial for the cancer early detection. Furthermore, parallel studies demonstrated the determinant role of post-translational modification in cancer formation and progression. This review aims to resume and combine all the different aspects involved in colorectal cancer malignancy, important for clinicians and researchers to understand where we currently stand, and which improvements are required. 

Downloads

Download data is not yet available.

References

1. Van Cutsem, E. et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann. Oncol. 27, 1386–1422 (2016).

2. Bianchini, F., Kaaks, R. & Vainio, H. Overweight, obesity, and cancer risk. Lancet. Oncol. 3, 565–74 (2002).

3. Dong, Y. et al. Abdominal obesity and colorectal cancer risk: systematic review and meta-analysis of prospective studies. Biosci. Rep. 37, (2017).

4. Limsui, D. et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J. Natl. Cancer Inst. 102, 1012–22 (2010).

5. Sagaert, X., Vanstapel, A. & Verbeek, S. Tumor Heterogeneity in Colorectal Cancer: What Do We Know So Far? Pathobiology 85, 72–84 (2018).

6. Blanco-Calvo, M., Concha, Á., Figueroa, A., Garrido, F. & Valladares-Ayerbes, M. Colorectal cancer classification and cell heterogeneity: A systems oncology approach. Int. J. Mol. Sci. 16, 13610–13632 (2015).

7. Van Cutsem, E. et al. Improving outcomes in colorectal cancer: Where do we go from here? Eur. J. Cancer 49, 2476–2485 (2013).

8. Van Cutsem, E., Cervantes, A., Nordlinger, B. & Arnold, D. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 25, iii1–iii9 (2014).

9. Sikic, B. I. Natural and Acquired Resistance to Cancer Therapies. in The Molecular Basis of Cancer 583–592 (Elsevier, 2008). doi:10.1016/B978-141603703-3.10049-4

10. Fleming, M., Ravula, S., Tatishchev, S. F. & Wang, H. L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 3, 153–73 (2012).

11. Duraiyan, J., Govindarajan, R., Kaliyappan, K. & Palanisamy, M. Applications of immunohistochemistry. J. Pharm. Bioallied Sci. 4, S307-9 (2012).

12. Shlush, L. I. & Hershkovitz, D. Clonal Evolution Models of Tumor Heterogeneity. Am. Soc. Clin. Oncol. Educ. B. 35, e662–e665 (2015).

13. Rosa, S. La et al. Tumor Heterogeneity in Primary Colorectal Cancer and Corresponding Metastases. Does the Apple Fall Far From the Tree? Front. Med. | www.frontiersin.org 1, 234 (2018).

14. Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2017).

15. Yang, S. Y., Cho, M. S. & Kim, N. K. Difference between right-sided and left-sided colorectal cancers: from embryology to molecular subtype. Expert Rev. Anticancer Ther. 18, 351–358 (2018).

16. Colussi, D., Brandi, G., Bazzoli, F. & Ricciardiello, L. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int. J. Mol. Sci. 14, 16365–85 (2013).

17. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

18. Broussard, E. K. & Disis, M. L. TNM staging in colorectal cancer: T is for T Cell and M is for memory. J. Clin. Oncol. 29, 601–603 (2011).

19. Guinney, J. et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 21, 1350–1356 (2015).

20. Vega, P., Valentín, F. & Cubiella, J. Colorectal cancer diagnosis: Pitfalls and opportunities. World J. Gastrointest. Oncol. 7, 422–33 (2015).

21. Jellema, P. et al. Value of symptoms and additional diagnostic tests for colorectal cancer in primary care: systematic review and meta-analysis. BMJ 340, c1269–c1269 (2010).

22. Ford, A. C. et al. Diagnostic utility of alarm features for colorectal cancer: systematic review and meta-analysis. Gut 57, 1545–1553 (2008).

23. Astin, M., Griffin, T., Neal, R. D., Rose, P. & Hamilton, W. The diagnostic value of symptoms for colorectal cancer in primary care: a systematic review. Br. J. Gen. Pract. 61, e231–e243 (2011).

24. Zarkavelis, G. et al. Current and future biomarkers in colorectal cancer. Ann. Gastroenterol. 30, 613–621 (2017).

25. Wang, P. et al. Rates of infection after colonoscopy and osophagogastroduodenoscopy in ambulatory surgery centres in the USA. Gut 67, 1626–1636 (2018).

26. Norcic, G. Liquid biopsy in colorectal cancer-current status and potential clinical applications. Micromachines 9, (2018).

27. SEER. No Title. Both Sexes by Race. U. S. National Institutes of Health, National Cancer Institute. Available at: https://seer.cancer.gov/csr/1975_2015/results_merged/topic_histologic_tabs.pdf#search=percent distribution and counts.

28. Allemani, C. et al. Global surveillance of cancer survival 1995–2009: analysis of individual data for 25 676 887 patients from 279 population-based registries in 67 countries (CONCORD-2). Lancet 385, 977–1010 (2015).

29. Allemani, C. et al. Colorectal cancer survival in the USA and Europe: a CONCORD high-resolution study. Open 3, 3055 (2013).

30. eurostat-european statistics. Self-reported last colorectal cancer screening test by sex, age and educational attainment level – Eurostat. Available at: https://ec.europa.eu/eurostat/web/products-datasets/-/hlth_ehis_pa5e. (Accessed: 13th December 2018)

31. Holst, S., Wuhrer, M. & Rombouts, Y. Glycosylation characteristics of colorectal cancer. Advances in Cancer Research 126, (Elsevier Inc., 2015).

32. Lech, G., Słotwiński, R., Słodkowski, M. & Krasnodębski, I. W. Colorectal cancer tumour markers and biomarkers: Recent therapeutic advances. World J. Gastroenterol. 22, 1745–55 (2016).

33. Diehl, F. et al. Circulating mutant DNA to assess tumor dynamics NIH Public Access Author Manuscript. Nat Med 14, 985–990 (2008).

34. Koga, Y. et al. Detection of colorectal cancer cells from feces using quantitative real-time RT-PCR for colorectal cancer diagnosis. Cancer Sci. 99, 1977–83 (2008).

35. Locker, G. Y. et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J. Clin. Oncol. 24, 5313–27 (2006).

36. Carpelan-Holmström, M., Louhimo, J., Stenman, U. H., Alfthan, H. & Haglund, C. CEA, CA 19-9 and CA 72-4 improve the diagnostic accuracy in gastrointestinal cancers. Anticancer Res. 22, 2311–6

37. Normanno, N., Cervantes, A., Ciardiello, F., De Luca, A. & Pinto, C. The liquid biopsy in the management of colorectal cancer patients: Current applications and future scenarios. Cancer Treat. Rev. 70, 1–8 (2018).

38. Woo, D. & Yu, M. Circulating tumor cells as “liquid biopsies” to understand cancer metastasis. Transl. Res. 201, 128–135 (2018).

39. Loureiro, L. R. et al. Novel monoclonal antibody L2A5 specifically targeting sialyl-Tn and short glycans terminated by alpha-2–6 sialic acids. Sci. Rep. 8, 12196 (2018).

40. Carrascal, M. A. et al. Sialyl Tn-expressing bladder cancer cells induce a tolerogenic phenotype in innate and adaptive immune cells. Mol. Oncol. 8, 753–65 (2014).

41. Neves, M. et al. Exploring sialyl-Tn expression in microfluidic-isolated circulating tumour cells: A novel biomarker and an analytical tool for precision oncology applications. N. Biotechnol. 49, 77–87 (2019).

42. Understanding Prognostic versus Predictive Biomarkers.

43. Oldenhuis, C. N. A. M., Oosting, S. F., Gietema, J. A. & de Vries, E. G. E. Prognostic versus predictive value of biomarkers in oncology. Eur. J. Cancer 44, 946–953 (2008).

44. Deschoolmeester, V., Baay, M., Specenier, P., Lardon, F. & Vermorken, J. B. A review of the most promising biomarkers in colorectal cancer: one step closer to targeted therapy. Oncologist 15, 699–731 (2010).

45. Hermanek, P. & Wittekind, C. The Pathologist and the Residual Tumor (R) Classification. Pathol. – Res. Pract. 190, 115–123 (1994).

46. Trinh, A. A. et al. Colorectal Cancer Subtypes by immunohistochemistry Keywords: Colorectal cancer subtypes, anti-EGFR therapy, immunohistochemistry, image analysis, prognostic Funding Sources: (2016). doi:10.1158/1078-0432.CCR-16-0680

47. Trinh, A. et al. Practical and Robust Identification of Molecular Subtypes in Colorectal Cancer by Immunohistochemistry. Clin. Cancer Res. (2016).

48. Lauc, G., Vojta, A. & Zoldoš, V. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochim. Biophys. Acta – Gen. Subj. 1840, 65–70 (2014).

49. Loureiro, L. R. et al. Challenges in Antibody Development against Tn and Sialyl-Tn Antigens. Biomolecules 5, 1783–809 (2015).

50. Rabu, C., McIntosh, R., Jurasova, Z. & Durrant, L. Glycans as targets for therapeutic antitumor antibodies. Futur. Oncol. 8, 943– 960 (2012).

51. Dennis, J. W., Nabi, I. R. & Demetriou, M. Metabolism, cell surface organization, and disease. Cell 139, 1229–41 (2009).

52. Holst, S. et al. Investigations on aberrant glycosylation of glycosphingolipids in colorectal cancer tissues using liquid chromatography and matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF-MS). Mol. Cell. Proteomics 12, 3081–93 (2013).

53. Dube, D. H. & Bertozzi, C. R. Glycans in cancer and inflammation--potential for therapeutics and diagnostics. Nat. Rev. Drug Discov. 4, 477–488 (2005).

54. Ferreira, J. A. et al. Overexpression of tumour-associated carbohydrate antigen sialyl-Tn in advanced bladder tumours. Mol. Oncol. 7, 719–731 (2013).

55. Julien, S., Videira, P. A. & Delannoy, P. Sialyl-tn in cancer: (how) did we miss the target? Biomolecules 2, 435–66 (2012).

56. Durrant, L. G., Noble, P. & Spendlove, I. Immunology in the clinic review series; focus on cancer: glycolipids as targets for tumour immunotherapy. Clin. Exp. Immunol. 167, 206–215 (2012).

57. Birklé, S., Zeng, G., Gao, L., Yu, R. . & Aubry, J. Role of tumor-associated gangliosides in cancer progression. Biochimie 85, 455–463 (2003).

58. Hung, J.-S. et al. C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget 5, 2096–106 (2014).

59. Thirunavukarasu, P. et al. C-stage in Colon Cancer: Implications of Carcinoembryonic Antigen Biomarker in Staging, Prognosis, and Management. JNCI J. Natl. Cancer Inst. 103, 689–697 (2011).

60. Kirwan, A., Utratna, M., O’Dwyer, M. E., Joshi, L. & Kilcoyne, M. Glycosylation-Based Serum Biomarkers for Cancer Diagnostics and Prognostics. Biomed Res. Int. 2015, 1–16 (2015).

61. Rho, J. et al. Discovery of sialyl Lewis A and Lewis X modified protein cancer biomarkers using high density antibody arrays. J. Proteomics 96, 291–9 (2014).

62. Croce, M. V., Sálice, V. C., Lacunza, E. & Segal-Eiras, A. α1-acid glycoprotein (AGP): A possible carrier of sialyl lewis X (slewis X) antigen in colorectal carcinoma. Histol. Histopathol. 20, 91–97 (2005).

63. Sterner, E., Flanagan, N. & Gildersleeve, C. of a Community Resource Database. doi:10.1021/acschembio.6b00244

64. Sharkey, R. M. & Goldenberg, D. M. Targeted Therapy of Cancer: New Prospects for Antibodies and Immunoconjugates. CA. Cancer J. Clin. 56, 226–243 (2006).

65. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129 (2001).

66. Stuhler, G. (Gernot) & Walden, P. Cancer immune therapy : current and future strategies. (Wiley-VCH, 2002).

67. Durrant, L. G., Harding, S. J., Green, N. H., Buckberry, L. D. & Parsons, T. A New Anticancer Glycolipid Monoclonal Antibody, SC104, which Directly Induces Tumor Cell Apoptosis. Cancer Res. 66, 5901–5909 (2006).

68. Sawada, R. et al. Human Monoclonal Antibodies to Sialyl-Lewisa (CA19.9) with Potent CDC, ADCC, and Antitumor Activity. Clin. Cancer Res. 17, 1024–1032 (2011).

69. Zhang, G. et al. Suppression of human prostate tumor growth by a unique prostate-specific monoclonal antibody F77 targeting a glycolipid marker. Proc. Natl. Acad. Sci. 107, 732–737 (2010).

70. Conaghan, P. et al. Targeted killing of colorectal cancer cell lines by a humanised IgG1 monoclonal antibody that binds to membranebound carcinoembryonic antigen. Br. J. Cancer 98, 1217–25 (2008).

71. Punt, C. J. et al. Edrecolomab alone or in combination with fluorouracil and folinic acid in the adjuvant treatment of stage III colon cancer: a randomised study. Lancet 360, 671–677 (2002).

72. Shapira, S., Lisiansky, V., Arber, N. & Kraus, S. Targeted immunotherapy for colorectal cancer: monoclonal antibodies and immunotoxins. Expert Opin. Investig. Drugs 19 Suppl 1, S67-77 (2010).

73. Loureiro, L. R. et al. Novel monoclonal antibody L2A5 specifically targeting sialyl-Tn and short glycans terminated by alpha-2–6 sialic acids. Sci. Rep. 8, 1–16 (2018).

74. Hansel, T. T., Kropshofer, H., Singer, T., Mitchell, J. A. & George, A. J. T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 9, 325–338 (2010).

75. Lutterbuese, R. et al. Potent Control of Tumor Growth by CEA/CD3-bispecific Single-chain Antibody Constructs That Are Not Competitively Inhibited by Soluble CEA. J. Immunother. 32, 341–352 (2009).

76. Danishefsky, S. J. & Allen, J. R. From the Laboratory to the Clinic: A Retrospective on Fully Synthetic Carbohydrate-Based Anticancer Vaccines. Angew. Chemie Int. Ed. 39, 836–863 (2000).

77. Holmberg, L. A. & Sandmaier, B. M. Theratope® vaccine (STn-KLH). Expert Opin. Biol. Ther. 1, 881–891 (2001).

78. Zhu, J., Warren, J. D. & Danishefsky, S. J. Synthetic carbohydrate-based anticancer vaccines: the Memorial Sloan-Kettering experience. Expert Rev. Vaccines 8, 1399–413 (2009).

79. Fuster, M. M. & Esko, J. D. The Sweet and Sour of Cancer: Glycans as Novel Therapeutic Targets. 5, 526–542 (2005).

80. Nitti, D. et al. Final results of a phase III clinical trial on adjuvant intraportal infusion with heparin and 5-fluorouracil (5-FU) in resectable colon cancer (EORTC GITCCG 1983–1987). Eur. J. Cancer 33, 1209–1215 (1997).

81. Varki, N. M. & Varki, A. Heparin Inhibition of Selectin-Mediated Interactions during the Hematogenous Phase of Carcinoma Metastasis: Rationale for Clinical Studies in Humans. Semin. Thromb. Hemost. 28, 53–66 (2002).

82. Posey, A. D. et al. Engineered CAR T Cells Targeting the Cancer-Associated Tn-Glycoform of the Membrane Mucin MUC1 Control Adenocarcinoma. Immunity 44, 1444–1454 (2016).

83. Wang, X. et al. Dynamic light scattering as an efficient tool to study glyconanoparticle–lectin interactions. Analyst 136, 4174 (2011).

84. Danhier, F., Messaoudi, K., Lemaire, L., Benoit, J.-P. & Lagarce, F. Combined anti-Galectin-1 and anti-EGFR siRNA-loaded chitosanlipid nanocapsules decrease temozolomide resistance in glioblastoma: In vivo evaluation. Int. J. Pharm. 481, 154–161 (2015).

85. Matevska-Geshkovska, N. et al. Influence of MSI and 18q LOH markers on capecitabine adjuvant monotherapy in colon cancer patients. Pharmgenomics. Pers. Med. Volume 11, 193–203 (2018).

86. Pilozzi, E. et al. Prognostic Significance of 18q LOH in Sporadic Colorectal Carcinoma.

87. Salem, M. E. et al. Comparative molecular analyses of left-sided colon, right-sided colon, and rectal cancers. Oncotarget 8, 86356–86368 (2017).

88. Glebov, O. K. et al. Distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol. Biomarkers Prev. 12, 755–62 (2003).

89. Touil, Y. et al. Colon Cancer Cells Escape 5FU Chemotherapy-Induced Cell Death by Entering Stemness and Quiescence Associated with the c-Yes/YAP Axis. Clin Cancer Res 1–10 doi:10.1158/1078-0432.CCR-13-1854

90. Heublein, S. et al. Association of differential miRNA expression with hepatic vs. peritoneal metastatic spread in colorectal cancer. BMC Cancer 18, 201 (2018).

91. Calon, A. et al. Dependency of colorectal cancer on a TGF-β-driven program in stromal cells for metastasis initiation. Cancer Cell 22, 571–84 (2012).

Downloads

Published

2020-09-30

Issue

Section

Review Article

Most read articles by the same author(s)

1 2 > >>