Physiological Principles of Bariatric Surgery: The Good and the Dark Side
DOI:
https://doi.org/10.34635/rpc.1132Keywords:
Appetite Regulation, Bariatric Surgery/adverse effects, Bariatric Surgery/methods, Dumping Syndrome, Gastrointestinal Hormones Obesity/surgery, Hypoglycemia/etiology, Postoperative ComplicationsAbstract
Obesity is a chronic, relapsing, and multifactorial disease arising from the complex interaction of neuroendocrine, genetic, and environmental factors. Traditional anthropometric measures, such as body mass index, inadequately capture the underlying pathophysiology of adipose tissue dysfunction and energy dysregulation. Metabolic and bariatric surgery remains the most effective and durable therapy for obesity and its metabolically related diseases; however, its benefits extend far beyond mechanical restriction and/or hypo- or malabsorption.
This review synthesizes current evidence on the physiological mechanisms underlying metabolic and bariatric surgery, focusing on how distinct procedures modulate gut- brain signaling, energy balance, and metabolic homeostasis. Key pathways influenced by metabolic and bariatric surgery- including alterations in gut hormone secretion, entero- insular axis activity, bile acid metabolism, gut microbiota composition, vagal signaling, and adipose tissue remodeling- are discussed. The review also addresses the metabolic outcomes associated with the most common surgical techniques and explores the "dark side" of bariatric surgery, encompassing dumping syndrome, post- bariatric hypoglycemia, and weight regain.
Metabolic and bariatric surgery induces systemic physiological reprogramming that transcends anatomical modification, acting primarily through neuroendocrine networks governing appetite, metabolism, and energy expenditure. A deeper understanding of these mechanisms is essential for optimizing procedure selection, improving long-term outcomes, and advancing the precision management of obesity as a chronic disease.
Downloads
References
1. Powell-Wiley TM, Poirier P, Burke LE, et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation. May 25 2021;143(21):e984-e1010. doi:10.1161/cir.0000000000000973
2. Lustig RH, Collier D, Kassotis C, et al. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol. May 2022;199:115012. doi:10.1016/j.bcp.2022.115012
3. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. Mar 1 2021;320(3):C375-c391. doi:10.1152/ajpcell.00379.2020
4. Purnell JQ, le Roux CW. Hypothalamic control of body fat mass by food intake: The key to understanding why obesity should be treated as a disease. Diabetes Obes Metab. Apr 2024;26 Suppl 2:3-12. doi:10.1111/dom.15478
5. Ganipisetti VM, Bollimunta P. Obesity and Set-Point Theory. StatPearls. StatPearls Publishing
Copyright © 2025, StatPearls Publishing LLC.; 2025.
6. Speakman JR, Levitsky DA, Allison DB, et al. Set points, settling points and some alternative models: theoretical options to understand how genes and environments combine to regulate body adiposity. Dis Model Mech. Nov 2011;4(6):733-45. doi:10.1242/dmm.008698
7. Garvey WT. Is Obesity or Adiposity-Based Chronic Disease Curable: The Set Point Theory, the Environment, and Second-Generation Medications. Endocr Pract. Feb 2022;28(2):214-222. doi:10.1016/j.eprac.2021.11.082
8. Schauer PR, Rothberg AE. Point-Counterpoint Debate: Surgery vs Medical Treatment for the Management of Obesity. J Clin Endocrinol Metab. Mar 17 2025;110(4):e1282-e1287. doi:10.1210/clinem/dgae888
9. Eisenberg D, Shikora SA, Aarts E, et al. 2022 American Society of Metabolic and Bariatric Surgery (ASMBS) and International Federation for the Surgery of Obesity and Metabolic Disorders (IFSO) Indications for Metabolic and Bariatric Surgery. Obes Surg. Jan 2023;33(1):3-14. doi:10.1007/s11695-022-06332-1
10. Brown WA, Liem R, Al-Sabah S, et al. Metabolic Bariatric Surgery Across the IFSO Chapters: Key Insights on the Baseline Patient Demographics, Procedure Types, and Mortality from the Eighth IFSO Global Registry Report. Obes Surg. May 2024;34(5):1764-1777. doi:10.1007/s11695-024-07196-3
11. Buchwald H, Buchwald JN. Evolution of operative procedures for the management of morbid obesity 1950-2000. Obes Surg. Oct 2002;12(5):705-17. doi:10.1381/096089202321019747
12. Sandoval D. Bariatric surgeries: beyond restriction and malabsorption. Int J Obes (Lond). Sep 2011;35 Suppl 3:S45-9. doi:10.1038/ijo.2011.148
13. Schlottmann F, Galvarini MM, Dreifuss NH, Laxague F, Buxhoeveden R, Gorodner V. Metabolic Effects of Bariatric Surgery. J Laparoendosc Adv Surg Tech A. Aug 2018;28(8):944-948. doi:10.1089/lap.2018.0394
14. Pories WJ, Caro JF, Flickinger EG, Meelheim HD, Swanson MS. The control of diabetes mellitus (NIDDM) in the morbidly obese with the Greenville Gastric Bypass. Ann Surg. Sep 1987;206(3):316-23. doi:10.1097/00000658-198709000-00009
15. Scopinaro N, Adami GF, Marinari GM, et al. Biliopancreatic diversion. World J Surg. Sep 1998;22(9):936-46. doi:10.1007/s002689900497
16. Switzer NJ, Prasad S, Debru E, Church N, Mitchell P, Gill RS. Sleeve Gastrectomy and Type 2 Diabetes Mellitus: a Systematic Review of Long-Term Outcomes. Obes Surg. Jul 2016;26(7):1616-21. doi:10.1007/s11695-016-2188-y
17. Sun EWL, Martin AM, Young RL, Keating DJ. The Regulation of Peripheral Metabolism by Gut-Derived Hormones. Front Endocrinol (Lausanne). 2018;9:754. doi:10.3389/fendo.2018.00754
18. Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. May 23 2002;346(21):1623-30. doi:10.1056/NEJMoa012908
19. Kuhne SG, Stengel A. Alteration of peptidergic gut-brain signaling under conditions of obesity. J Physiol Pharmacol. Oct 2019;70(5)doi:10.26402/jpp.2019.5.01
20. Calanna S, Christensen M, Holst JJ, et al. Secretion of glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes: systematic review and meta-analysis of clinical studies. Diabetes Care. Oct 2013;36(10):3346-52. doi:10.2337/dc13-0465
21. Svane MS, Ohrstrom CC, Plamboeck A, et al. Neurotensin secretion after Roux-en-Y gastric bypass, sleeve gastrectomy, and truncal vagotomy with pyloroplasty. Neurogastroenterol Motil. Jan 2022;34(1):e14210. doi:10.1111/nmo.14210
22. von Loeffelholz C, Gissey LC, Schumann T, et al. The anorexigenic peptide neurotensin relates to insulin sensitivity in obese patients after BPD or RYGB metabolic surgery. Int J Obes (Lond). Dec 2018;42(12):2057-2061. doi:10.1038/s41366-018-0084-3
23. Rhee NA, Wahlgren CD, Pedersen J, et al. Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes. Diabetologia. Oct 2015;58(10):2254-8. doi:10.1007/s00125-015-3696-3
24. Wolnerhanssen BK, Moran AW, Burdyga G, et al. Deregulation of transcription factors controlling intestinal epithelial cell differentiation; a predisposing factor for reduced enteroendocrine cell number in morbidly obese individuals. Sci Rep. Aug 15 2017;7(1):8174. doi:10.1038/s41598-017-08487-9
25. Nergard BJ, Lindqvist A, Gislason HG, et al. Mucosal glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide cell numbers in the super-obese human foregut after gastric bypass. Surg Obes Relat Dis. Nov-Dec 2015;11(6):1237-46. doi:10.1016/j.soard.2015.03.021
26. Guedes TP, Martins S, Costa M, et al. Detailed characterization of incretin cell distribution along the human small intestine. Surg Obes Relat Dis. Nov-Dec 2015;11(6):1323-31. doi:10.1016/j.soard.2015.02.011
27. Zanchi D, Depoorter A, Egloff L, et al. The impact of gut hormones on the neural circuit of appetite and satiety: A systematic review. Neurosci Biobehav Rev. Sep 2017;80:457-475. doi:10.1016/j.neubiorev.2017.06.013
28. Vohra MS, Benchoula K, Serpell CJ, Hwa WE. AgRP/NPY and POMC neurons in the arcuate nucleus and their potential role in treatment of obesity. Eur J Pharmacol. Jan 15 2022;915:174611. doi:10.1016/j.ejphar.2021.174611
29. Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med. Feb 27 2024;13(5)doi:10.3390/jcm13051347
30. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. Oct 13 2004;292(14):1724-37. doi:10.1001/jama.292.14.1724
31. Alam I, Stephens JW, Fielding A, Lewis KE, Lewis MJ, Baxter JN. Temporal changes in glucose and insulin homeostasis after biliopancreatic diversion and laparoscopic adjustable gastric banding. Surg Obes Relat Dis. Nov-Dec 2012;8(6):752-63. doi:10.1016/j.soard.2011.10.018
32. Dixon JB, O'Brien PE, Playfair J, et al. Adjustable gastric banding and conventional therapy for type 2 diabetes: a randomized controlled trial. JAMA. Jan 23 2008;299(3):316-23. doi:10.1001/jama.299.3.316
33. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg. Jan 2004;239(1):1-11. doi:10.1097/01.sla.0000102989.54824.fc
34. Goh YM, Toumi Z, Date RS. Surgical cure for type 2 diabetes by foregut or hindgut operations: a myth or reality? A systematic review. Surg Endosc. Jan 2017;31(1):25-37. doi:10.1007/s00464-016-4952-4
35. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab. Jun 2004;89(6):2608-15. doi:10.1210/jc.2004-0433
36. Patriti A, Aisa MC, Annetti C, et al. How the hindgut can cure type 2 diabetes. Ileal transposition improves glucose metabolism and beta-cell function in Goto-kakizaki rats through an enhanced Proglucagon gene expression and L-cell number. Surgery. Jul 2007;142(1):74-85. doi:10.1016/j.surg.2007.03.001
37. Jirapinyo P, Jin DX, Qazi T, Mishra N, Thompson CC. A Meta-Analysis of GLP-1 After Roux-En-Y Gastric Bypass: Impact of Surgical Technique and Measurement Strategy. Obes Surg. Mar 2018;28(3):615-626. doi:10.1007/s11695-017-2913-1
38. Perez-Arana GM, Diaz-Gomez A, Camacho-Ramirez A, et al. Dual effect of RYGB on the entero-insular axis: How GLP-1 is enhanced by surgical duodenal exclusion. Ann Anat. Aug 2023;249:152094. doi:10.1016/j.aanat.2023.152094
39. Wen J, Syed B, Nadora D, et al. Tirzepatide Versus Semaglutide on Weight Loss in Type 2 Diabetes Patients: A Systematic Review and Meta-Analysis of Direct Comparative Studies. Endocrinol Diabetes Metab. May 2025;8(3):e70045. doi:10.1002/edm2.70045
40. Wilbrink JA, van Avesaat M, Nienhuijs SW, Stronkhorst A, Masclee AAM. Changes in gastrointestinal motility and gut hormone secretion after Roux-en-Y gastric bypass and sleeve gastrectomy for individuals with severe obesity. Clin Obes. Apr 2025;15(2):e12721. doi:10.1111/cob.12721
41. Pereira SS, Guimaraes M, Almeida R, et al. Biliopancreatic diversion with duodenal switch (BPD-DS) and single-anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S) result in distinct post-prandial hormone profiles. Int J Obes (Lond). Dec 2019;43(12):2518-2527. doi:10.1038/s41366-018-0282-z
42. Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and beta cell function. J Clin Invest. Dec 2012;122(12):4667-74. doi:10.1172/JCI64895
43. Sheng B, Truong K, Spitler H, Zhang L, Tong X, Chen L. The Long-Term Effects of Bariatric Surgery on Type 2 Diabetes Remission, Microvascular and Macrovascular Complications, and Mortality: a Systematic Review and Meta-Analysis. Obes Surg. Oct 2017;27(10):2724-2732. doi:10.1007/s11695-017-2866-4
44. Guimarães M, Pereira SS, Holst JJ, Nora M, Monteiro MP. Can Metabolite and Hormone Profiles Provide a Rationale for Choosing Between Bariatric Procedures? Obes Surg. May 2021;31(5):2174-2179. doi:10.1007/s11695-021-05246-8
45. Yu J, Zhou X, Li L, et al. The long-term effects of bariatric surgery for type 2 diabetes: systematic review and meta-analysis of randomized and non-randomized evidence. Obes Surg. Jan 2015;25(1):143-58. doi:10.1007/s11695-014-1460-2
46. Kodama S, Fujihara K, Horikawa C, et al. Network meta-analysis of the relative efficacy of bariatric surgeries for diabetes remission. Obes Rev. Dec 2018;19(12):1621-1629. doi:10.1111/obr.12751
47. Currie AC, Askari A, Fangueiro A, Mahawar K. Network Meta-Analysis of Metabolic Surgery Procedures for the Treatment of Obesity and Diabetes. Obes Surg. Oct 2021;31(10):4528-4541. doi:10.1007/s11695-021-05643-z
48. Nora M, Morais T, Almeida R, Guimaraes M, Monteiro MP. Should Roux-en-Y gastric bypass biliopancreatic limb length be tailored to achieve improved diabetes outcomes? Medicine (Baltimore). Dec 2017;96(48):e8859. doi:10.1097/MD.0000000000008859
49. Verhoeff K, Mocanu V, Zalasky A, et al. Evaluation of Metabolic Outcomes Following SADI-S: a Systematic Review and Meta-analysis. Obes Surg. Apr 2022;32(4):1049-1063. doi:10.1007/s11695-021-05824-w
50. Ataya K, Patel N, Aljaafreh A, et al. Outcomes of Single Anastomosis Sleeve Ileal (SASI) Bypass as an Alternative Procedure in Treating Obesity: An Updated Systematic Review and Meta-Analysis. Obes Surg. Sep 2024;34(9):3285-3297. doi:10.1007/s11695-024-07366-3
51. Oliveira CR, Santos-Sousa H, Costa MP, et al. Efficiency and safety of single anastomosis sleeve ileal (SASI) bypass in the treatment of obesity and associated comorbidities: a systematic review and meta-analysis. Langenbecks Arch Surg. Jul 18 2024;409(1):221. doi:10.1007/s00423-024-03413-w
52. Tacchino RM. Bowel length: measurement, predictors, and impact on bariatric and metabolic surgery. Surg Obes Relat Dis. Mar-Apr 2015;11(2):328-34. doi:10.1016/j.soard.2014.09.016
53. Kumar P, Yau HV, Trivedi A, Yong D, Mahawar K. Global Variations in Practices Concerning Roux-en-Y Gastric Bypass-an Online Survey of 651 Bariatric and Metabolic Surgeons with Cumulative Experience of 158,335 Procedures. Obes Surg. Nov 2020;30(11):4339-4351. doi:10.1007/s11695-020-04796-7
54. Wang A, Poliakin L, Sundaresan N, et al. The role of total alimentary limb length in Roux-en-Y gastric bypass: a systematic review. Surg Obes Relat Dis. Apr 2022;18(4):555-563. doi:10.1016/j.soard.2021.08.022
55. Nora M, Guimaraes M, Almeida R, et al. Metabolic laparoscopic gastric bypass for obese patients with type 2 diabetes. Obes Surg. Nov 2011;21(11):1643-9. doi:10.1007/s11695-011-0418-x
56. Shah K, Nergard BJ, Fagerland MW, Gislason H. Failed Roux-en-Y Gastric Bypass-Long-Term Results of Distalization with Total Alimentary Limb Length of 250 or 300 cm. Obes Surg. Jan 2023;33(1):293-302. doi:10.1007/s11695-022-06388-z
57. Sanchez-Pernaute A, Herrera MAR, Ferre NP, et al. Long-Term Results of Single-Anastomosis Duodeno-ileal Bypass with Sleeve Gastrectomy (SADI-S). Obes Surg. Mar 2022;32(3):682-689. doi:10.1007/s11695-021-05879-9
58. Finno P, Osorio J, Garcia-Ruiz-de-Gordejuela A, et al. Single Versus Double-Anastomosis Duodenal Switch: Single-Site Comparative Cohort Study in 440 Consecutive Patients. Obes Surg. Sep 2020;30(9):3309-3316. doi:10.1007/s11695-020-04566-5
59. Pereira SS, Jarak I, Carvalho RA, et al. Different Malabsorptive Obesity Surgery Interventions Result in Distinct Postprandial Amino Acid Metabolomic Signatures. Obes Surg. Oct 2020;30(10):4019-4028. doi:10.1007/s11695-020-04774-z
60. Athanasiadis DI, Giannopoulos S, Selzer D, Stefanidis D. Does the length of bypassed bowel during distal gastric bypass affect weight loss? Surg Endosc. Dec 2024;38(12):7486-7490. doi:10.1007/s00464-024-11188-w
61. Pereira AM, S SP, Nora M, R FA, M PM, Guimaraes M. Long-Term Outcomes of Single and Dual Anastomosis Duodenal Switch. Obes Surg. Aug 9 2025;doi:10.1007/s11695-025-08114-x
62. Ebrahimian Jektaji R, Moosavi SS, Moghaddam Ahmadi M. Impact of bypass percentage on clinical outcomes following one-anastomosis gastric bypass: a one-year follow-up study. BMC Surg. Aug 19 2025;25(1):375. doi:10.1186/s12893-025-03119-w
63. Elamin D, Wills MV, Aulestia J, et al. Counting Limb Length Ratios in Roux-en-Y Gastric Bypass: A Demonstration of Safety and Feasibility Using a 25-Patient Case Series in a High-Volume Academic Center. J Clin Med. Jul 25 2025;14(15)doi:10.3390/jcm14155262
64. Hess DS, Hess DW, Oakley RS. The biliopancreatic diversion with the duodenal switch: results beyond 10 years. Obes Surg. Mar 2005;15(3):408-16. doi:10.1381/0960892053576695
65. Carbajo MA, Luque-de-Leon E, Jimenez JM, Ortiz-de-Solorzano J, Perez-Miranda M, Castro-Alija MJ. Laparoscopic One-Anastomosis Gastric Bypass: Technique, Results, and Long-Term Follow-Up in 1200 Patients. Obes Surg. May 2017;27(5):1153-1167. doi:10.1007/s11695-016-2428-1
66. Slagter N, van der Laan L, de Heide LJM, et al. Effect of tailoring biliopancreatic limb length based on total small bowel length versus standard limb length in one anastomosis gastric bypass: 1-year outcomes of the TAILOR randomized clinical superiority trial. Br J Surg. Aug 30 2024;111(9)doi:10.1093/bjs/znae219
67. Soong TC, Almalki OM, Lee WJ, et al. Measuring the small bowel length may decrease the incidence of malnutrition after laparoscopic one-anastomosis gastric bypass with tailored bypass limb. Surg Obes Relat Dis. Oct 2019;15(10):1712-1718. doi:10.1016/j.soard.2019.08.010
68. Shak JR, Roper J, Perez-Perez GI, et al. The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg. Sep 2008;18(9):1089-96. doi:10.1007/s11695-008-9454-6
69. McCarty TR, Jirapinyo P, Thompson CC. Effect of Sleeve Gastrectomy on Ghrelin, GLP-1, PYY, and GIP Gut Hormones: A Systematic Review and Meta-analysis. Ann Surg. Jul 2020;272(1):72-80. doi:10.1097/SLA.0000000000003614
70. Pereira AM, Moura D, Pereira SS, et al. Beyond Restrictive: Sleeve Gastrectomy to Single Anastomosis Duodeno-Ileal Bypass with Sleeve Gastrectomy as a Spectrum of One Single Procedure. Obes Facts. 2024;17(4):364-371. doi:10.1159/000539104
71. Fatima F, Hjelmesaeth J, Birkeland KI, et al. Gastrointestinal Hormones and beta-Cell Function After Gastric Bypass and Sleeve Gastrectomy: A Randomized Controlled Trial (Oseberg). J Clin Endocrinol Metab. Jan 18 2022;107(2):e756-e766. doi:10.1210/clinem/dgab643
72. Steenackers N, Vanuytsel T, Augustijns P, et al. Effect of sleeve gastrectomy and Roux-en-Y gastric bypass on gastrointestinal physiology. Eur J Pharm Biopharm. Feb 2023;183:92-101. doi:10.1016/j.ejpb.2022.12.018
73. Peterli R, Steinert RE, Woelnerhanssen B, et al. Metabolic and hormonal changes after laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy: a randomized, prospective trial. Obes Surg. May 2012;22(5):740-8. doi:10.1007/s11695-012-0622-3
74. Gao Z, Yang J, Liang Y, et al. Changes in Gastric Inhibitory Polypeptide (GIP) After Roux-en-Y Gastric Bypass in Obese Patients: a Meta-analysis. Obes Surg. Aug 2022;32(8):2706-2716. doi:10.1007/s11695-022-05959-4
75. De Bandt D, Rives-Lange C, Frigout Y, et al. Similar Gut Hormone Secretions Two Years After One Anastomosis Gastric Bypass and Roux-en-Y Gastric Bypass: a Pilot Study. Obes Surg. Mar 2022;32(3):757-762. doi:10.1007/s11695-021-05837-5
76. Elias K, Webb DL, Diaz Tartera HO, Hellstrom PM, Sundbom M. Impact of biliopancreatic diversion with duodenal switch on glucose homeostasis and gut hormones and their correlations with appetite. Surg Obes Relat Dis. Dec 2022;18(12):1392-1398. doi:10.1016/j.soard.2022.08.010
77. Lobato CB, Pereira SS, Guimaraes M, et al. Glycemic variability and entero-pancreatic hormones signatures after different bariatric surgery procedures: a cross-sectional study. Int J Obes (Lond). Aug 9 2025;doi:10.1038/s41366-025-01865-8
78. Tu J, Wang Y, Jin L, Huang W. Bile acids, gut microbiota and metabolic surgery. Front Endocrinol (Lausanne). 2022;13:929530. doi:10.3389/fendo.2022.929530
79. Akalestou E, Miras AD, Rutter GA, le Roux CW. Mechanisms of Weight Loss After Obesity Surgery. Endocr Rev. Jan 12 2022;43(1):19-34. doi:10.1210/endrev/bnab022
80. Hosseinzadeh A, Roever L, Alizadeh S. Surgery-Induced Weight Loss and Changes in Hormonally Active Fibroblast Growth Factors: a Systematic Review and Meta-Analysis. Obes Surg. Oct 2020;30(10):4046-4060. doi:10.1007/s11695-020-04807-7
81. Martinou E, Stefanova I, Iosif E, Angelidi AM. Neurohormonal Changes in the Gut-Brain Axis and Underlying Neuroendocrine Mechanisms following Bariatric Surgery. Int J Mol Sci. Mar 19 2022;23(6)doi:10.3390/ijms23063339
82. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. Aug 2 2005;102(31):11070-5. doi:10.1073/pnas.0504978102
83. Qi R, Zhang B, Qiu X, et al. Microbiome and metabolome analyses indicate variations in the gut microbiota that disrupt regulation of appetite. Faseb j. Aug 31 2024;38(16):e70003. doi:10.1096/fj.202401360R
84. de Groot P, Scheithauer T, Bakker GJ, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time. Gut. Mar 2020;69(3):502-512. doi:10.1136/gutjnl-2019-318320
85. Cork SC. The role of the vagus nerve in appetite control: Implications for the pathogenesis of obesity. J Neuroendocrinol. Nov 2018;30(11):e12643. doi:10.1111/jne.12643
86. Gautron L. The Phantom Satiation Hypothesis of Bariatric Surgery. Front Neurosci. 2021;15:626085. doi:10.3389/fnins.2021.626085
87. Navarro-Perez J, Vidal-Puig A, Carobbio S. Recent developments in adipose tissue-secreted factors and their target organs. Curr Opin Genet Dev. Jun 2023;80:102046. doi:10.1016/j.gde.2023.102046
88. Kirichenko TV, Markina YV, Bogatyreva AI, Tolstik TV, Varaeva YR, Starodubova AV. The Role of Adipokines in Inflammatory Mechanisms of Obesity. Int J Mol Sci. Nov 29 2022;23(23)doi:10.3390/ijms232314982
89. Šebunova N, Štšepetova J, Kullisaar T, et al. Changes in adipokine levels and metabolic profiles following bariatric surgery. BMC Endocr Disord. Feb 3 2022;22(1):33. doi:10.1186/s12902-022-00942-7
90. D'Hoedt A, Vanuytsel T. Dumping syndrome after bariatric surgery: prevalence, pathophysiology and role in weight reduction - a systematic review. Acta Gastroenterol Belg. Jul-Sep 2023;86(3):417-427. doi:10.51821/86.3.11476
91. van Beek AP, Emous M, Laville M, Tack J. Dumping syndrome after esophageal, gastric or bariatric surgery: pathophysiology, diagnosis, and management. Obes Rev. Jan 2017;18(1):68-85. doi:10.1111/obr.12467
92. Banerjee A, Ding Y, Mikami DJ, Needleman BJ. The role of dumping syndrome in weight loss after gastric bypass surgery. Surg Endosc. May 2013;27(5):1573-8. doi:10.1007/s00464-012-2629-1
93. Lobato CB, Pereira SS, Guimarães M, et al. A Potential Role for Endogenous Glucagon in Preventing Post-Bariatric Hypoglycemia. Front Endocrinol (Lausanne). 2020;11:608248. doi:10.3389/fendo.2020.608248
94. Øhrstrøm CC, Hansen DL, Kielgast UL, et al. Counterregulatory responses to postprandial hypoglycemia after Roux-en-Y gastric bypass. Surg Obes Relat Dis. Jan 2021;17(1):55-63. doi:10.1016/j.soard.2020.08.037
95. Nazarians-Armavil A, Menchella JA, Belsham DD. Cellular insulin resistance disrupts leptin-mediated control of neuronal signaling and transcription. Mol Endocrinol. Jun 2013;27(6):990-1003. doi:10.1210/me.2012-1338
96. Salazar J, Duran P, Garrido B, et al. Weight Regain after Metabolic Surgery: Beyond the Surgical Failure. J Clin Med. Feb 18 2024;13(4)doi:10.3390/jcm13041143
97. Varma S, Clark JM, Schweitzer M, Magnuson T, Brown TT, Lee CJ. Weight regain in patients with symptoms of post-bariatric surgery hypoglycemia. Surg Obes Relat Dis. Oct 2017;13(10):1728-1734. doi:10.1016/j.soard.2017.06.004
98. Meguid MM, Glade MJ, Middleton FA. Weight regain after Roux-en-Y: a significant 20% complication related to PYY. Nutrition. Sep 2008;24(9):832-42. doi:10.1016/j.nut.2008.06.027
99. Çalık Başaran N, Dotan I, Dicker D. Post metabolic bariatric surgery weight regain: the importance of GLP-1 levels. Int J Obes (Lond). Mar 2025;49(3):412-417. doi:10.1038/s41366-024-01461-2
100. Brissman M, Beamish AJ, Olbers T, Marcus C. Prevalence of insufficient weight loss 5 years after Roux-en-Y gastric bypass: metabolic consequences and prediction estimates: a prospective registry study. BMJ Open. Mar 2 2021;11(3):e046407. doi:10.1136/bmjopen-2020-046407
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Portuguese Journal of Surgery

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Para permitir ao editor a disseminação do trabalho do(s) autor(es) na sua máxima extensão, o(s) autor(es) deverá(ão) assinar uma Declaração de Cedência dos Direitos de Propriedade (Copyright). O acordo de transferência, (Transfer Agreement), transfere a propriedade do artigo do(s) autor(es) para a Sociedade Portuguesa de Cirurgia.
Se o artigo contiver extractos (incluindo ilustrações) de, ou for baseado no todo ou em parte em outros trabalhos com copyright (incluindo, para evitar dúvidas, material de fontes online ou de intranet), o(s) autor(es) tem(êm) de obter, dos proprietários dos respectivos copyrights, autorização escrita para reprodução desses extractos do(s) artigo(s) em todos os territórios e edições e em todos os meios de expressão e línguas. Todas os formulários de autorização devem ser fornecidos aos editores quando da entrega do artigo.
